

Communication

Luotonin A. A Naturally Occurring Human DNA Topoisomerase I Poison

Ali Cagir, Shannon H. Jones, Rong Gao, Brian M. Eisenhauer, and Sidney M. Hecht J. Am. Chem. Soc., 2003, 125 (45), 13628-13629• DOI: 10.1021/ja0368857 • Publication Date (Web): 17 October 2003 Downloaded from http://pubs.acs.org on March 30, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 9 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 10/17/2003

Luotonin A. A Naturally Occurring Human DNA Topoisomerase I Poison

Ali Cagir, Shannon H. Jones, Rong Gao, Brian M. Eisenhauer, and Sidney M. Hecht* Departments of Chemistry and Biology, University of Virginia, Charlottesville, Virginia 22901 Received June 24, 2003; E-mail: sidhecht@virginia.edu

The demonstrated clinical utility of two camptothecin analogues as antitumor agents¹ has prompted intensive efforts to identify additional clinical candidates in this class.² Accordingly, study of the mechanism of action of the camptothecins has been of great interest, as it may afford insights leading to improved therapeutic agents. A key biochemical target for CPT (1) is the covalent binary complex formed between DNA and topoisomerase I during DNA relaxation; stabilization of this complex by CPT is believed to lead to cell death.³

Luotonin A (2) is a pyrroloquinazolinoquinoline alkaloid extracted from the Chinese medicinal plant Peganum nigellastrum.4 Luotonin A is cytotoxic toward the murine leukemia P-388 cell line (IC₅₀ 1.8 μ g/mL), although the mechanism is unknown.^{4a,5} There are obvious structural similarities between CPT (1) and luotonin A, notably in identical rings A-C. The greatest differences are in ring E, which is known to be critical for CPT function as a topoisomerase I inhibitor and antineoplastic agent.⁶ Alterations in the lactone ring or 20-OH group typically render CPT dysfunctional, although a few exceptions have been reported.2g,7 The lactone of CPT has long been known to be quite electrophilic,8 and most structure-activity studies have supported a relationship between lactone electrophilicity and the ability of CPT to stabilize the topoisomerase I-DNA covalent binary complex.6 It has been suggested that this putative relationship may reflect the transient covalent attachment of CPT to the topoisomerase I-DNA complex.^{3b,9} In this context, the lack of functionality in the E-ring of luotonin A argues against its ability to function in the same fashion as CPT.

Presently, we demonstrate that despite the lack of E-ring functionality, luotonin A stabilizes the human DNA topoisomerase I–DNA covalent binary complex and mediates topoisomerase I-dependent cytotoxicity in intact cells. Shown in Figure 1 is the effect of CPT and luotonin A on the stabilization of the topoisomerase I–DNA binary complexes in a ³²P-end labeled 222 bp DNA duplex. In common with CPT, luotonin A¹⁰ effected concentration-dependent stabilization of the enzyme–DNA binary complex. While luotonin A was less potent than CPT, stabilization was observed at the same sites for both; the identical effect, as judged by electrophoretic analysis, argues that the chemistry of cleavage was the same for both. Neither **1** nor **2** had any measurable effect on DNA in the absence of topoisomerase I.

While not thought to contribute to its antitumor activity, CPT also inhibits topoisomerase I-mediated relaxation of supercoiled DNA when present at high concentrations. This is illustrated in Figure 2 at $100-500 \ \mu$ M CPT concentrations in the presence of

1 2 3 4 5 6 7 8 9

substrate was 3'-³²P end labeled on the scissile strand. Human topoisomerase I-mediated cleavage reactions were incubated at 37 °C for 1 h and then digested with proteinase K. Lanes 1 and 2, Maxam–Gilbert sequencing reactions; G, and C + T, respectively. Lane 3, DNA alone; lane 4, 50 μ M CPT; lane 5, 50 μ M luotonin A; lane 6, topoisomerase I and 50 μ M CPT; lane 7, topoisomerase I and 50 μ M luotonin A; lane 8, topoisomerase I and 10 μ M luotonin A; lane 9, topoisomerase I and 2 μ M luotonin A. No significant DNA cleavage was observed in the presence of topoisomerase I + DNA alone. In a parallel experiment, cleavage at the site marked by an arrow was stabilized to the extents of 58%, 14%, and 1% at 50, 10, and 2 μ M luotonin A, respectively, relative to that achieved with 50 μ M CPT.

Figure 2. Effect of luotonin A on human topoisomerase I-mediated DNA relaxation. Supercoiled pSP64 plasmid DNA was incubated at 37 °C for 10 min as indicated. Lane 1, supercoiled pSP64 plasmid DNA alone; lane 2, DNA + 0.1 ng of topoisomerase I; lanes 3–5, DNA + topoisomerase I + 500, 200, and 100 μ M of camptothecin, respectively; lanes 6–8, DNA + topoisomerase I + 500, 200, and 100 μ M of luotonin A, respectively.

0.1 ng of human topoisomerase I. As shown in the Figure, luotonin A (2) had no effect on DNA relaxation under the same conditions, although 2 did weakly inhibit plasmid DNA relaxation by calf thymus DNA topoisomerase I (not shown).

To evaluate the possible cytotoxic effects resulting from stabilization of the enzyme–DNA binary complex, luotonin A was evaluated in a strain of *Saccharomyces cerevisiae* lacking yeast topoisomerase I, but harboring a plasmid having the human topoisomerase I gene under the control of a galactose promoter.¹¹ As shown in Table 1, 1 μ M CPT had no effect when this yeast strain was grown on raffinose. However, 1 μ M CPT caused 74% inhibition after 2 days when the same yeast strain was grown on galactose, resulting in topoisomerase I expression. Luotonin A produced 36% inhibition of growth when employed at 1 μ M Table 1. Human Topoisomerase I-Dependent Cytotoxicity of CPT (1) and Luotonin A (2) toward *S. cerevisiae*^a

compound	concentration (µM)	% inhibition on growth medium	
		raffinose	galactose
CPT (1)	1.0	0	74
luotonin A (2)	1.0	0	36
	0.5	0	23

^{*a*} Inhibition of RS321Nph-TOP1 grown in minimal medium containing 3% raffinose or galactose for 2 days at 30 °C.

concentration in the presence of galactose.¹² In replicate experiments, lutonin A exhibited IC₅₀ values from 5.7 to 12.6 μ M in the presence of galactose. The comparable values for CPT were 0.74–0.86 μ M.

The closely analogous effects of CPT and luotonin A on stabilization of the topoisomerase I–DNA binary complex, and on the production of human topoisomerase I-dependent cytotoxicity in yeast, suggest that the two agents likely function in the same fashion. This conclusion identifies a putative biochemical locus for the cytotoxic action of luotonin A and has important implications both for the mechanism of inhibition of topoisomerase I function by CPT and for the design of new CPT analogues.

At a mechanistic level, it seems clear that no electrophilic E-ring lactone is needed for stabilization of the topoisomerase I–DNA covalent binary complex. Despite the apparent correlation between E-ring lactone electrophilicity and topoisomerase I inhibitory activity,⁶ the present findings add to the weight of evidence that argues against the covalent attachment of CPT to the enzyme–DNA binary complex.

In terms of inhibitor design, recent X-ray crystallographic studies¹³ and computational models¹⁴ suggest a role for the 20(S)-OH group in interaction with DNA topoisomerase I, possibly through hydrogen bonding to the enzyme. This interaction is further supported by the lack of activity of 20(R) CPT,^{15,16} as well as 20deoxyCPT.16,17 The 20-chloro, bromo, and amino derivatives of CPT have been shown to stabilize the topoisomerase I-DNA binary complex and to produce human topoisomerase I-dependent cytotoxicity in yeast, albeit with somewhat reduced potency.¹⁶ While it seems likely that functional groups properly oriented at the 20position of CPT can contribute to the stability of the ternary complex formed with topoisomerase I and DNA, the present results obtained with luotonin A suggest that, even in the absence of any functional group at the 20-position, an aromatic E-ring can confer reasonable stability to the formed ternary complex. This may reflect a stacking interaction first posited by Kohn, Pommier and co-workers14a,18 and now present in many models of the ternary complex.13 It seems reasonable to suggest that the presence of appropriate functional groups on the E-ring might further modulate the interaction of luotonin A with the topoisomerase I-DNA binary complex. In any case, the present results make it clear that an electrophilic E-ring is not essential for stabilization of the topoisomerase I-DNA covalent binary complex.

At a practical level, it may be noted that elaboration of the E-ring of CPT is perhaps the most challenging aspect of the synthesis of this natural product. The several concise syntheses already reported for luotonin A^{5,10,19} suggest that the preparation of luotonin A analogues should be straightforward.

Acknowledgment. We thank Dr. Mary-Ann Bjornsti, St. Jude Children's Research Hospital, for the yeast strain employed in this study. This work was supported by NIH Research Grant CA78415 awarded by the National Cancer Institute.

References

- (a) Takimoto, C. H.; Wright, J.; Arbuck, S. G. Biochim. Biophys. Acta 1998, 1400, 107. (b) O'Leary, J.; Muggia, F. M. Eur. J. Cancer 1998, 34, 1500. (c) Saltz, L. B.; Cox, J. V.; Blanke, C.; Rosen, L. S.; Fehrenbacher, L.; Moore, M. J.; Maroun, J. A.; Ackland, S. P.; Locker, P. K.; Pirotta, N.; Elfring, G. L.; Miller, L. L. N. Engl. J. Med. 2000, 343, 905. (d) Ozols, R. F. Int. J. Gynecol. Cancer 2000, 10, 33. (e) Vanhoefer, U.; Harstrick, A.; Achterrath, W.; Cao, S.; Seeber, S.; Rustum, Y. M. J. Clin. Oncol. 2001, 19, 1501. (f) Ulukan, H.; Swaan, P. W. Drugs 2002, 62, 2039. (g) Garcia-Carbonero, R.; Supko, J. G. Clin. Cancer Res. 2002, 8, 641.
- (a) Wall, M. E.; Wani, M. C.; Nicholas, A. W.; Manikumar, G.; Tele, C.; Moore, L.; Truesdale, A.; Leitner, P.; Besterman, J. M. J. Med. Chem. 1993, 36, 2689. (b) Yaegashi, T.; Sawada, S.; Nagata, H.; Furuta, T.; Yokokura, T.; Miyasaka, T. Chem. Pharm. Bull. 1994, 42, 2518. (c) Lackey, K.; Besterman, J. M.; Fletcher, W.; Leitner, P.; Morton, B.; Sternbach, D. D. J. Med. Chem. 1995, 38, 906. (d) Luzzio, M. J.; Besterman, J. M.; Emerson, D. L.; Evans, M. G.; Lackey, K.; Leitner, P. L.; McIntyre, G.; Morton, B.; Myers, P. L.; Peel, M.; Sisco, J. M.; Sternbach, D. D.; Tong, W.-Q.; Truesdale, A.; Uehling, D. E.; Vuong, A.; Yates, J. J. Med. Chem. 1995, 38, 395. (e) Lackey, K.; Sternbach, D. D.; Croom, D. K.; Emerson, D. L.; Evans, M. G.; Leitner, P. L.; Luzzio, M. J.; McIntyre, G.; Vuong, A.; Yates, J.; Besterman, J. M. J. Med. Chem. 1996, 39, 713. (f) Lavergne, O.; Lesueur-Ginot, L.; Pla Rodas, F.; Bigg, D. C. H. Bioorg. Med. Chem. Lett. 1997, 7, 2235. (g) Lavergne, O.; Lesueur-Ginot, L.; Pla Rodas, F.; Kasprzyk, P. G.; Pommier, J.; Demarquay, D.; Prévost, G.; Ulibarri, G.; Rolland, A.; Schiano-Liberatore, A.-M.; Harnett, J.; Pons, D.; Camara, J. Bigg, D. C. H. J. Med. Chem. 1998, 41, 5410. (h) Garbarda, A. E.; Du, W.; Isarno, T.; Tangirala, R. S.; Curran, D. P. Tetrahedron 2002, 58, 6329.
- (3) (a) Hsiang, Y.-H.; Hertzberg, R.; Hecht, S. M.; Liu, L. F. J. Biol. Chem. 1985, 260, 14873. (b) Kohn, K. W.; Pommier, Y. Ann. N.Y. Acad. Sci. 2000, 922, 11.
- (4) (a) Xiao, X.-H.; Qou, G.-L.; Wang, H.-L.; Lui, L.-S.; Zheng, Y.-L.; Jia, Z.-J.; Deng, Z.-B. *Chin J. Pharmacol. Toxicol.* **1988**, 232. (b) Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. *Heterocycles* **1997**, *46*, 541.
- (5) Yadav, J. S.; Reddy, B. V. S. Tetrahedron Lett. 2002, 43, 1905.
- (6) (a) Hutchinson, C. R. *Tetrahedron* **1981**, *37*, 1047. (b) Hertzberg, R. P.; Caranfa, M. J.; Holden, K. G.; Jakas, D. R.; Gallagher, G.; Mattern, M. R.; Mong, S.-M.; Bartus, J. O.; Johnson, R. K.; Kingsbury, W. D. *J. Med. Chem.* **1989**, *32*, 715.
- (7) Lesueur-Ginot, L.; Demarquay, D.; Kiss, R.; Kasprzyk, P. G.; Dassonneville, L.; Bailly, C.; Camara, J.; Lavergne, O.; Bigg, D. C. *Cancer Res.* **1999**, *59*, 2939.
- (8) Wall, M. E.; Wani, M. C. Annu. Rev. Pharmacol. Toxicol. 1977, 17, 117.
 (9) Pommier, Y.; Tanizawa, A.; Kohn, K. W. Adv. Pharmacol. 1994, 29B, 72
- (10) Prepared by modification of: (a) Wang, H.; Ganesan, A. Tetrahedron Lett. **1998**, *39*, 9097. (b) Dallavalle, S.; Merlini, L. Tetrahedron Lett. **2002**, *43* 1835
- (11) Bjornsti, M. A.; Benedetti, P.; Viglianti, G. A.; Wang, J. C. *Cancer Res.* **1989**, *49*, 6318.
- (12) Treatment of the same yeast strain *lacking* the plasmid with $1 \mu M 1$ or 2 produced no cytotoxicity. Note: cytotoxic agents such as 1 and 2 should be handled with caution.
- (13) (a) Redinbo, M. R.; Stewart, L.; Kuhn, P.; Champoux, J. J.; Hol. W. G. *Science* **1998**, 279, 1504. (b) Stewart, L.; Redinbo, M. R.; Qui, X.; Hol, W. G.; Champoux, J. J. *Science* **1998**, 279, 1534. (c) Staker, B. L.; Hjerrild, K.; Feese, M. D.; Behnke, C. A.; Burgin, A. B.; Stewart, L. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, 99, 15387.
- (14) (a) Fan, Y.; Weinstein, J. N.; Kohn, K. W.; Shi, L. M.; Pommier, Y. J. Med. Chem. 1988, 31, 2216. (b) Kerrigan, J. E.; Pilch, D. S. Biochemistry 2001, 40, 9792. (c) Laco, G. S.; Collins, J. R.; Luke, B. T.; Kroth, H.; Sayer, J. M.; Jerina, D. M.; Pommier, Y. Biochemistry 2002, 41, 1428.
- (15) Jaxel, C.; Kohn, K. W.; Wani, M. C.; Wall, M. E.; Pommier, Y. Cancer Res. 1989, 49, 1465.
- (16) Wang, X.; Zhou, X.; Hecht, S. M. Biochemistry 1999, 38, 4374.
- (17) Hertzberg, R. P.; Caranfa, M. J.; Hecht, S. M. *Biochemistry* 1989, 28, 4629.
- (18) Pommier, Y.; Kohlhagen, G.; Kohn, K. W.; Leteurtre, F.; Wani, M. C.; Wall, M. E. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 8861.
- (19) (a) Ma, Z.-Z.; Hano, Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1999, 51, 1593. (b) Kelly, T. R.; Chamberland, S.; Silva, R. A. Tetrahedron Lett. 1999, 40, 2723. (c) Molina, P.; Terraga, A.; Gonzalez-Tejero, A. Synthesis-Stuttgart 2000, 11, 1523. (d) Toyota, M.; Komori, C.; Ihara, M. Heterocycles 2002, 56, 101. (e) Osborne, D.; Stevenson, P. J. Tetrahedron Lett. 2003, 43, 5469. (f) Lee, E. S.; Park, J.-G.; Jahng, Y. Tetrahedron Lett. 2003, 44, 1883. (g) Harayama, T.; Morikami, Y.; Shigeta, Y.; Abe, H.; Takeuchi, Y. Synlett 2003, 6, 847.

JA0368857